Power analyses for measurement model misspecification and response shift detection with structural equation modeling

Author:

Verdam M. G. E.ORCID

Abstract

Abstract Purpose Statistical power for response shift detection with structural equation modeling (SEM) is currently underreported. The present paper addresses this issue by providing worked-out examples and syntaxes of power calculations relevant for the statistical tests associated with the SEM approach for response shift detection. Methods Power calculations and related sample-size requirements are illustrated for two modelling goals: (1) to detect misspecification in the measurement model, and (2) to detect response shift. Power analyses for hypotheses regarding (exact) overall model fit and the presence of response shift are demonstrated in a step-by-step manner. The freely available and user-friendly R-package lavaan and shiny-app ‘power4SEM’ are used for the calculations. Results Using the SF-36 as an example, we illustrate the specification of null-hypothesis (H0) and alternative hypothesis (H1) models to calculate chi-square based power for the test on overall model fit, the omnibus test on response shift, and the specific test on response shift. For example, we show that a sample size of 506 is needed to reject an incorrectly specified measurement model, when the actual model has two-medium sized cross loadings. We also illustrate power calculation based on the RMSEA index for approximate fit, where H0 and H1 are defined in terms of RMSEA-values. Conclusion By providing accessible resources to perform power analyses and emphasizing the different power analyses associated with different modeling goals, we hope to facilitate the uptake of power analyses for response shift detection with SEM and thereby enhance the stringency of response shift research.

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Sprangers, M. A. G., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: A theoretical model. Social Science and Medicine, 48, 1507–1515. https://doi.org/10.1016/s0277-9536(99)00045-3

2. Sprangers, M. A. G., Sajobi, T., Vanier, A., Mayo, N. E., Sawatzky, R., Lix, L. M., Oort, F. J., Sébille, V., & Response Shift – in Sync Working Group. (2021). Response shift results of patient-reported outcome measures: A commentary to The response shift-in sync working group initiative. Quality of Life Research, 30(12), 3299–3308. https://doi.org/10.1007/s11136-020-02747-4

3. Vanier, A., Oort, F. J., McClimans, L., Ow, N., Gulek, B. G., Böhnke, J. R., Sprangers, M. A. G., Sébille, V., Mayo, N., & Response Shift – in Sync Working Group. (2021). Response shift in patient-reported outcomes: Definition, theory, and a revised model. Quality of Life Research, 30(12), 3309–3322. https://doi.org/10.1007/s11136-021-02846-w

4. Sébille, V., Lix, L. M., Ayilara, O. F., Sajobi, T. T., Janssens, C. J. W., Sawatzky, R., Sprangers, M. A. G., Verdam, M. G. E. & the Response Shift – in Sync Working Group. (2021). Critical examination of current response shift methods and proposal for advancing new methods. Quality of Life Research, 30(12), 3325–3342. https://doi.org/10.1007/s11136-020-02755-4

5. Sawatzky, R., Kwon, J.-Y., Barclay, R., Chauhan, C., Frank, L., van den Hout, W. B., Kongsgaard Nielsen, L., Nolte, S., Sprangers, M. A. G., & Response Shift – in Sync Working Group. (2021). Implications of response shift for micro-, meso-, and macro-level healthcare decision-making using results of patient-reported outcome measures. Quality of Life Research, 30(12), 3343–3357. https://doi.org/10.1007/s11136-021-02766-9

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3