Predicting presenteeism using measures of health status

Author:

Jones CherylORCID,Payne KatherineORCID,Thompson Alexander,Verstappen Suzanne M. M.ORCID

Abstract

Abstract Objectives To identify whether it is feasible to develop a mapping algorithm to predict presenteeism using multiattribute measures of health status. Methods Data were collected using a bespoke online survey in a purposive sample (n = 472) of working individuals with a self-reported diagnosis of Rheumatoid arthritis (RA). Survey respondents were recruited using an online panel company (ResearchNow). This study used data captured using two multiattribute measures of health status (EQ5D-5 level; SF6D) and a measure of presenteeism (WPAI, Work Productivity Activity Index). Statistical correlation between the WPAI and the two measures of health status (EQ5D-5 level; SF6D) was assessed using Spearman’s rank correlation. Five regression models were estimated to quantify the relationship between WPAI and predict presenteeism using health status. The models were specified based in index and domain scores and included covariates (age; gender). Estimated and observed presenteeism were compared using tenfold cross-validation and evaluated using Root mean square error (RMSE). Results A strong and negative correlation was found between WPAI and: EQ5D-5 level and WPAI (r = − 0.64); SF6D (r =− 0.60). Two models, using ordinary least squares regression were identified as the best performing models specifying health status using: SF6D domains with age interacted with gender (RMSE = 1.7858); EQ5D-5 Level domains and age interacted with gender (RMSE = 1.7859). Conclusions This study provides indicative evidence that two existing measures of health status (SF6D and EQ5D-5L) have a quantifiable relationship with a measure of presenteeism (WPAI) for an exemplar application of working individuals with RA. A future study should assess the external validity of the proposed mapping algorithms.

Funder

Arthritis Research UK

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3