Machine learning models for 180-day mortality prediction of patients with advanced cancer using patient-reported symptom data

Author:

Xu Cai,Subbiah Ishwaria M.,Lu Sheng-Chieh,Pfob André,Sidey-Gibbons ChrisORCID

Abstract

Abstract Purpose The objective of the current study was to develop and test the performances of different ML algorithms which were trained using patient-reported symptom severity data to predict mortality within 180 days for patients with advanced cancer. Methods We randomly selected 630 of 689 patients with advanced cancer at our institution who completed symptom PRO measures as part of routine care between 2009 and 2020. Using clinical, demographic, and PRO data, we trained and tested four ML algorithms: generalized regression with elastic net regularization (GLM), extreme gradient boosting (XGBoost) trees, support vector machines (SVM), and a single hidden layer neural network (NNET). We assessed the performance of algorithms individually as well as part of an unweighted voting ensemble on the hold-out testing sample. Performance was assessed using area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Results The starting cohort of 630 patients was randomly partitioned into training (n = 504) and testing (n = 126) samples. Of the four ML models, the XGBoost algorithm demonstrated the best performance for 180-day mortality prediction in testing data (AUROC = 0.69, sensitivity = 0.68, specificity = 0.62, PPV = 0.66, NPV = 0.64). Ensemble of all algorithms performed worst (AUROC = 0.65, sensitivity = 0.65, specificity = 0.62, PPV = 0.65, NPV = 0.62). Of individual PRO symptoms, shortness of breath emerged as the variable of highest impact on the XGBoost 180-mortality prediction (1-AUROC = 0.30). Conclusion Our findings support ML models driven by patient-reported symptom severity as accurate predictors of short-term mortality in patients with advanced cancer, highlighting the opportunity to integrate these models prospectively into future studies of goal-concordant care.

Funder

American Cancer Society

Andrew Sabin Family Foundation

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3