Improvement of biogas yields in an anaerobic digestion process via optimization technique

Author:

Obileke KeChristORCID,Makaka Golden,Tangwe Stephen,Mukumba Patrick

Abstract

AbstractAnaerobic digestion for biogas production was first used in 1895 for electricity generation and treating municipal solid waste in 1939. Since then, overcoming substrate recalcitrance and methane production has been one way to assess the quality of biogas production in a sustainable manner. These are achieved through pre-treatment methods and mathematical modeling predictions. However, previous studies have shown that optimisation techniques (pre-treatment and mathematical modeling) improve biogas yield efficiently and effectively. The good news about these techniques is that they address the challenges of low efficiency, cost, energy, and long retention time usually encountered during anaerobic digestion. Therefore, this paper aims to comprehensively review different promising pre-treatment technologies and mathematical models and discuss their latest advanced research and development, thereby highlighting their contribution towards improving the biogas yield. The comparison, application, and significance of findings from both techniques, which are still unclear and lacking in the literature, are also presented. With over 90 articles reviewed from academic databases (Springer, ScienceDirect, SCOPUS, Web of Science, and Google Scholar), it is evident that artificial neural network (ANN) predicts and improves biogas yield efficiently and accurately. On the other hand, all the pre-treatment techniques are unique in their mode of application in enhancing biogas yield. Hence, this depends on the type of substrate used, composition, location, and conversion process. Interestingly, the study reveals research findings from authors concerning the enhancement of biogas yield to arrive at a conclusion of the best optimization technique, thereby making the right selection technique. Graphical Abstract

Funder

University of Fort Hare

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3