Application of modern portfolio theory to the European electricity mix: an assessment of environmentally optimal scenarios

Author:

deLlano-Paz FernandoORCID,Cartelle-Barros Juan JoséORCID,Martínez-Fernández PaulinoORCID

Abstract

AbstractThe proposed study analyzes the efficiency of the European energy mix of electricity generation technologies from two perspectives: environmental and economic. The context is that of European energy dependence and a technology mix conditioned by the import of fossil fuels. The impact is centered, among other elements, on the leakage of national income and the emission of polluting gases. The aim is to determine the participation that each type of power plant in each country should present in order to minimize the total environmental impact. In order to solve this problem, a double optimization is proposed through the use of two methodologies: one based on a multi-criteria decision-making method (MCDM) model with which to evaluate the environmental performance of each power plant, and a second optimization based on a quadratic model of portfolios modern portfolio theory (MPT), with which to evaluate the efficiency of the portfolio of technologies from the cost/risk binomial. The results confirm that an environmentally efficient portfolio leads to higher levels of economic risk-taking, with a slight increase in the level of assumed cost. Nevertheless, from the results obtained, it is possible to say that hydro (with a share between 11 and 13%) and wind (37–44% mix participation) technologies resulted to be preferred options both environmentally and in terms of minimum risk efficiency. Nuclear power generation stands out as one of the main baseload technologies with shares between 25 and 35% in environmental and cost/risk efficiency. As main findings, Hydro, supercritical lignite, solar PV and wind are identified as preferential technologies to be present in both minimum risk and minimum cost efficient portfolios. In case European Union pursues for minimizing the cost of electricity production, the shares of supercritical lignite, nuclear, solar PV and wind energy go up to the maximum allowed limits. The novelty lies in the application of both methodologies with which to complement the analysis and design efficient portfolios of energy technologies from environmental and economic points of view. One possible future approach would be to assess (with the MPT model) new environmentally optimal portfolios obtained through the application of other MCDM techniques.

Funder

Universidade da Coruña

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Economics and Econometrics,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3