A metaheuristic approach to compare different combined economic emission dispatch methods involving load shifting policy

Author:

Misra Srikant,Panigrahi P. K.,Ghosh Saradindu,Dey BishwajitORCID

Abstract

AbstractDistributed generators (DGs), which can be traditional fossil fuel generators or renewable energy sources (RES), must be appropriately planned in order to reduce a power network’s overall generating cost. Renewable energy sources (RES) should be prioritized because they provide a clean and sustainable energy supply and are abundant in nature. Demand side management (DSM) optimizes the scheduling of flexible loads to reduce peak demand and improve the load factor, while keeping daily demand unchanged. The test system in this research employs a dependable and effective hybrid optimization tool to plan the DGs of a dynamic system in a way that matches low active power production costs with low pollutant emissions. The fitness functions used in the test system were non-linear due to the presence of the valve point effect (VPE). The costs and emissions were evaluated for various fitness functions which included involvement of wind, DSM, and different types of combined economic emission dispatch (CEED) methods. The test system’s peak demand was cut by 12% and the load factor was raised from 0.7528 to 0.85 when DSM technique was used. The generation cost has been reduced from $1,014,996 to $1,012,182 using CSAJAYA algorithm which was further reduced to $1,007,441 after incorporating DSM. Likewise, the CEEDppf was also observed to be reduced to $1,231,435 and $1,216,885 with and without DSM compared to $1,232,001 from reported literature. Numerical results show that both the cost and emission were reduced significantly using the proposed CSAJAYA compared to a long-sighted list of algorithms published in literature. Graphical Abstract

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3