The alleviation of drought-induced damage to growth and physio-biochemical parameters of Brassica napus L. genotypes using an integrated approach of biochar amendment and PGPR application

Author:

Lalay Gul,Ullah Abd,Iqbal Nadeem,Raza Ali,Asghar Muhammad AhsanORCID,Ullah Sami

Abstract

AbstractDrought is a major abiotic stress, affecting the metabolism, growth, and productivity of plants worldwide. Therefore, this study aimed/hypothesized to investigate the ameliorative effects of biochar and rhizobacteria in drought-damaged Brassica napus L. genotypes. The plants were divided into two groups based on the drought stress employment (15 days and 30 days). Both groups were then treated with PGPR, biochar, and their co-application, and the samples were taken from shoots and roots of both genotypes. Our results revealed that the drought resulted in a substantial decline in total flavonoids, phenolics, proteins, peroxidase (POD), superoxide dismutase (SOD), glutathione reductase (GR) as well as nutrient uptake in shoots and roots of both the studied genotypes. Contrarily, sugar and glycine betaine (GB) contents increased in both shoots and roots under drought stress conditions. However, the plants with co-application of biochar and PGPR showed better improvement of nutrient uptake, leaf relative water content (RWC), and growth parameters compared to drought-stressed, control, and the plants with sole biochar and PGPR application. In addition, the co-application of PGPR and biochar produced higher levels of sugar, proteins, flavonoids, phenolic compounds, and enzymatic activities (POD, SOD, GR, and dehydroascorbate reductase (DHAR)) than those that were not treated with biochar and PGPR or treated solely. Relative to Westar genotype, the Punjab sarson showed higher drought tolerance. In conclusion, we suggest that the co-application of biochar and PGPR can be an effective strategy for overcoming the drought-induced damage in plants. Graphical Abstract

Funder

ELKH Centre for Agricultural Research

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Economics and Econometrics,Geography, Planning and Development

Reference84 articles.

1. Abdelaal, K. A. (2015). Effect of salicylic acid and abscisic acid on morpho-physiological and anatomical characters of faba bean plants (Vicia faba L.) under drought stress. Journal of Plant Production, 6, 1771–1788.

2. Agami, R. A., Medani, R. A., Abd El-Mola, I. A., & Taha, R. S. (2016). Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. International Journal of Environmental & Agriculture Research, 2, 78.

3. Agami, R. A., Medani, R. A., El-Mola, A., & Taha, I. A. (2016). Exogenous application with plant growth promoting rhizobacteria (PGPR) or proline induces stress tolerance in basil plants (Ocimum basilicum L.) exposed to water stress. International Journal of Environmental & Agriculture Research, 2, 78.

4. Asthir, B., Kaur, S., & Mann, S. K. (2009). Effect of salicylic and abscisic acid administered through detached tillers on antioxidant system in developing wheat grains under heat stress. Acta Physiologiae Plantarum, 31, 1091–1096.

5. Azmat, A., Tanveer, Y., Yasmin, H., Hassan, M. N., Shahzad, A., Reddy, M., & Ahmad, A. (2022). Coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria for mitigation of synchronized effects of heat and drought stress in wheat plants. Chemosphere, 297, 133982.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3