A framework for establishing a rapid ‘Ōhi‘a death resistance program

Author:

Luiz Blaine C.ORCID,Giardina Christian P.ORCID,Keith Lisa M.,Jacobs Douglass F.,Sniezko Richard A.,Hughes Marc A.,Friday James B.,Cannon Philip,Hauff Robert,Francisco Kainana,Chau Marian M.,Dudley Nicklos,Yeh Aileen,Asner Gregory,Martin Roberta E.,Perroy Ryan,Tucker Brian J.,Evangelista ʻAleʻalani,Fernandez Veronica,Martins-Keliʻihoʻomalu Chloe,Santos Kirie,Ohara Rebekah

Abstract

AbstractMetrosideros polymorpha Gaud. (‘ōhi‘a) is the most abundant native forest tree in Hawai‘i and a keystone species of cultural, ecological, and economic importance. ‘Ōhi‘a forests, particularly on Hawaiʻi Island, are being severely impacted by Rapid ‘Ōhi‘a Death (ROD), which is caused by the fungal pathogens Ceratocystis lukuohia and C. huliohia. ROD is characterized by branch dieback, crown wilting, and mortality. Initial disease resistance screening of four varieties of M. polymorpha with C. lukuohia demonstrated that varieties may differ in susceptibility. Several survivors of field or screening-based infections still exist, providing strong impetus for the establishment of the ‘Ōhiʻa Disease Resistance Program (ʻŌDRP). Here, we outline a framework for guiding the ʻŌDRP throughout the process of identifying and developing ROD resistance in M. polymorpha and, possibly, all Hawaiian Metrosideros species. Core ʻŌDRP projects include: (1) evaluating and operationalizing methods for greenhouse-based production and screening of test plants; (2) greenhouse screening of seedlings and rooted cuttings sampled from native Metrosideros throughout Hawaiʻi; (3) establishing field trials to validate results from greenhouse assays; (4) understanding environmental and genetic drivers of resistance to characterize the durability of resistance to ROD; (5) developing remote sensing and molecular methods to rapidly detect ROD-resistant individuals; and (6) conducting breeding trials to improve the degree and durability of ROD resistance. Ultimately, the ʻŌDRP seeks to produce ROD-resistant material for the perpetuation of M. polymorpha across Hawai‘i, with the goal of preserving the ecology, culture, and communities that are dependent on this tree species.

Funder

USDA Forest Service Region 5

USDA Forest Service Region 6

Hawaii Community Foundation

Hawaii Department of Land and Natural Resources, Division of Forestry and Wildlife

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3