Variation in the chemical quality of woody supplements for nursery growing media affects growth of tree seedlings

Author:

Adamczyk BartoszORCID,Adamczyk Sylwia,Kitunen Veikko,Hytönen Tuija,Mäkipää Raisa,Pennanen Taina

Abstract

AbstractTree seedlings are produced in tree nurseries. However, nursery-grown seedlings often exhibit poor performance after outplanting due to the lack of adaptation to harsh natural conditions. These nursery-grown seedlings do not necessarily possess well-developed ectomycorrhizal symbionts, which help to obtain nutrients and increase resilience in exchange for seedling photoassimilated carbon. To improve the quality of the seedlings in natural conditions, we sowed spruce seeds on growing media with the addition of wood chips, i.e. stemwood chips or polyphenol- and resin acid-rich knotwood chips. Wood chips were chosen because they are common forest side-streams, and their compounds have shown a potential to improve mycorrhization and seedling fitness. Wood chips initially decreased the growth of seedlings. However, this effect levelled off with time and depended on the quality of the wood. Wood chips had no effect on mycorrhization. Further testing of the wood material showed that wood chips seemed to decrease seedling growth via nitrogen (N) immobilisation rather than a direct toxic effect. The phenomenon of N immobilisation on wood chips could be explored further to develop a slow-release N source, aptly reflecting N availability in natural conditions. Slow-release N source based on wood chips could be beneficial both to increase survival in natural conditions and for environment protection.

Funder

Biotieteiden ja Ympäristön Tutkimuksen Toimikunta

Maj ja Tor Nesslingin Säätiö

Natural Resources Institute Finland

Publisher

Springer Science and Business Media LLC

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3