Appropriately limiting quantities of remanufacturing products considering virtual inventory for stabilization of production resources

Author:

Koketsu Jundai,Ishigaki Aya,Ijuin Hiromasa,Yamada Tetsuo

Abstract

AbstractAs environmental problems become more apparent, manufacturers need to balance environmental considerations with economic activities. This is where closed-loop supply chains are gaining attention. However, in addition to demand fluctuations, which are a problem in conventional supply chains, a circular supply chain is unstable in terms of supply, where end-of-life products are collected and reused. This destabilizes not only excess inventory and shortages but also production resources, such as manpower, facilities, and raw materials. This study focuses on the stabilization of the manufacturing system in a closed-loop supply chain. To confirm the dynamic changes in the manufacturing system, we designed a simulation model of a closed-loop manufacturing system and conducted numerical experiments under several scenarios, taking the variation of manufacturing quantity per unit period as an evaluation measure of stability. After showing that unplanned remanufacturing destabilizes the recovery of reusable end-of-life products, we demonstrate that the manufacturing system can be stabilized by appropriately limiting the amount of remanufacturing. However, excessive limits reduce opportunities for remanufacturing end-of-life products and generate adverse economic and environmental impacts. To determine appropriate restrictions, it is necessary to consider the product currently in use by the customer as a virtual inventory and to consider factors such as the quality of the products in the virtual inventory. In the future, we plan to study a system that can dynamically manage remanufacturing quantities based on the status of virtual inventories.

Funder

Japan Society for the Promotion of Science

Tokyo University of Science

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3