Assessing Molodensky’s Heights: A Rebuttal

Author:

Kingdon R.,Vaníček P.,Santos M.,Martinec Z.,Foroughi I.

Abstract

AbstractThis paper is written as a progression of the ongoing discussion in geodesy about the merits of the Molodensky height system versus the classical height system. It is a rebuttal of a publication in the Proceedings of the IX Hotine-Marussi Symposium on Mathematical Geodesy by Victor Popadyev titled “On the Advantage of Normal Heights: Once More on the Shape of Quasigeoid.” Even though Popadyev’s paper was not presented at the symposium it was published in the proceedings regardless. It purports to address a presentation from the symposium titled “The shape of the quasigeoid”, that applied a set of criteria to judge the suitability of the quasigeoid as a vertical reference surface, ultimately finding it inferior due to its edges and folds. The proceedings paper acknowledges these irregularities in the quasigeoid, but instead argues that the Molodensky system, apart from any vertical reference surface, should be evaluated on two different and more favorable criteria, and finds it superior on that basis. Herein, we continue the ongoing discussion by clarifying some of the misunderstandings in the Popadyev paper and explaining that even on the favourable criteria proposed the Molodensky system holds no advantages over the classical system.

Publisher

Springer Berlin Heidelberg

Reference41 articles.

1. Amos M (2010) New Zealand Vertical Datum 2009. New Zealand Surveyor, No. 300

2. Brown N, McCubbine J, Featherston W, Gowans N, Woods A, Baran I (2018) AUSGeoid2020 combined gravimetric–geometric model: location-specific uncertainties and baseline-length-dependent error decorrelation. J Geodesy 92(12):1457–1465. https://doi.org/10.1007/s00190-018-1202-7

3. Cheraghi H, Hatam Y, Vaníček P, Najafi Alamdari M, Djamour Y, Qarakhani J, Saadat R (2007) Effect of lateral topographical density variations on the geoid in Iran. In: Poster presentation at General Assembly of European Geosciences Union, Vienna, April 15-20

4. Ellmann A, Vaníček P (2007) UNB application of Stokes-Helmert’s approach to geoid computation. J Geodyn 43(2):200–213. https://doi.org/10.1016/j.jog.2006.09.019

5. Ellmann A, Vaníček P, Santos M, Kingdon R (2007) Interrelation between the geoid and orthometric heights, First International Symposium of The International Gravity Field Service (IGFS), oral presentation, August 28 - September 1, 2006, Istanbul, Turkey. Forsberg R, Kilicoglu A (eds) Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity Field of the Earth”. General Command of Mapping, Ankara, Turkey, pp 130–135

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On correct definition and use of normal heights in geodesy;Studia Geophysica et Geodaetica;2024-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3