Gravimetry by Nanoscale Parametric Amplifiers Driven by Radiation-Induced Dispersion Force Modulation

Author:

Pinto Fabrizio

Abstract

AbstractHere we present early results from lumped-element numerical simulations of a novel class of nano electromechanical systems (NEMS) presently being considered for ground-based gravimetry and future micro accelerometry applications in GPS-denied environments, including spacecraft. The strategy we discuss is based on measuring the effects of non-inertial or gravitational forces on the dynamics of a standard oscillator driven at its resonance frequency by a time-dependent electrostatic potential. In order to substantially enhance the sensitivity of the instrument, the oscillating mass is made to simultaneously interact with a nearby boundary so as to be affected by quantum electrodynamical Casimir forces. Furthermore, unlike previously published proposals, in the design presented herein the Casimir boundary does not oscillate but it is a fixed semiconducting layer. As already demonstrated experimentally, this arrangement enables Casimir force time-modulation by semiconductor back-illumination. Such a design strategy, first suggested by this author as a promising approach to gravitational wave detection in different nano-sensors, allows for the realization of a Casimir force-pumped mechanical parametric amplifier. Such devices can, in principle, yield gains of several orders of magnitude in the mechanical response amplitude over the response from standard unpumped oscillators. The numerical proof-of-concept first presented herein points to a potentially new class of gravimetry products based on exploiting appropriately engineered dispersion forces as an emerging enabling general purpose technology on the nanoscale.

Publisher

Springer Berlin Heidelberg

Reference60 articles.

1. Andreucci P, Duraffourg L, Ollier E, Nguyen V, Delay MT, Robert P (2006) In: Proceedings of IEEE sensors. IEEE, Daegu, Korea, pp 1057–1060

2. Arnold W, Hunklinger S, Dransfeld K (1979) Phys Rev B 19(4):6049

3. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing RS, Israelachvili JN, Full RJ (2002) Proc Natl Acad Sci USA 99(19):12252

4. Beeby S, Ensell G, Kraft M, White N (2004) MEMS mechanical sensors. Artech House, Boston

5. Bilhaut L, Duraffourg L (2009) Acta Astronautica 65(9-10):1272

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spacecraft Accelerometry with Parametric Nanoamplifiers Pumped by Radiation-Induced Dispersion Force Modulation;2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3