Spatio-Spectral Assessment of Some Isotropic Polynomial Covariance Functions on the Sphere

Author:

Piretzidis Dimitrios,Kotsakis Christopher,Mertikas Stelios P.,Sideris Michael G.

Abstract

AbstractIn gravity field modeling, covariance functions are mainly associated with least squares collocation. Prior to the implementation of least squares collocation, the characteristics of the selected analytical covariance function need to be well understood. In this contribution, we study four polynomial covariance functions, i.e., the spherical, Askey, C2-Wendland and C4-Wendland models. All of them are defined on the sphere and correspond to isotropic, positive definite and compactly supported functions. We examine them in the spatial and spectral domains, and assess their characteristics, such as the correlation length, the curvature parameter, the spectral maximum and the spectral decay rate. We also provide analytical expressions and numerical estimates for these parameters.

Publisher

Springer Berlin Heidelberg

Reference15 articles.

1. Askey R (1973) Radial characteristics functions. Technical Report. Mathematics Research Center, University of Wisconsin-Madison. https://apps.dtic.mil/sti/citations/AD0773603

2. Chernih A, Hubbert S (2014) Closed form representations and properties of the generalised Wendland functions. J Approx Theory 177:17–33. https://doi.org/10.1016/j.jat.2013.09.005

3. Devaraju B, Sneeuw N (2018) The role of two-point functions in geodesy and their classification. In: Commemorative publication in honor of Prof. Bernhard Heck, KIT Scientific Publishing, Karlsruhe, pp 49–55. https://doi.org/10.5445/IR/1000080211

4. Emery X, Arroyo D, Mery N (2022) Twenty-two families of multivariate covariance kernels on spheres, with their spectral representations and sufficient validity conditions. Stoch Env Res Risk A 36(5):1447–1467. https://doi.org/10.1007/s00477-021-02063-4

5. Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4). https://doi.org/10.3150/12-BEJSP06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3