Author:
Usifoh Saturday E.,Männel Benjamin,Sakic Pierre,Dodo Joseph D.,Schuh Harald
Abstract
AbstractGNSS-based velocity fields are a key tool to assess the boundaries around major deforming areas, to explain the main patterns of surface motion and deformation, to analytically review existing kinematics models and finally, to study the underlying tectonic activities. Determination of a velocity field for Africa is of great importance in the determination of the African Reference Frame; this is essential for better understanding the African plate tectonics. Therefore, this study focusses on the determination of the African velocity fields using continuously operated GNSS stations. We processed and analyzed 11 years of data obtained from a total number of 145 GNSS site using GFZ’s EPOS.P8 software. The result shows that Africa moves in the North-East direction. The station coordinates derived with PPP show averaged RMS values of 2.9 mm, 9.9 mm and 8.5 mm for the north, east and up components with respect to the estimated trajectory models. Horizontal velocities at sites located on stable Nubia plate fit a single plate model with residual motion below 1 mm/year of RMS. We confirm significant southeast motion in Morocco and Zambia with residual velocities of 1.4 mm/year and 0.9 mm/year, respectively. We estimate the Euler Poles for Nubia and Somalia with 48.59°N, −78.64°E, 0.264°/Myr and 60.38°N, −83.33°E, 0.272°/Myr, respectively. Vertical velocities range from −2 to +2 mm/year, close to their uncertainties, with no distinct geographic pattern. The study also provides continental-wide position and velocity field solution for Africa, and can also be considered as a contribution to the upcoming AFREF, the African Geodetic Reference Frame.
Publisher
Springer Berlin Heidelberg
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献