Determination of a GNSS-Based Velocity Field of the African Continent

Author:

Usifoh Saturday E.,Männel Benjamin,Sakic Pierre,Dodo Joseph D.,Schuh Harald

Abstract

AbstractGNSS-based velocity fields are a key tool to assess the boundaries around major deforming areas, to explain the main patterns of surface motion and deformation, to analytically review existing kinematics models and finally, to study the underlying tectonic activities. Determination of a velocity field for Africa is of great importance in the determination of the African Reference Frame; this is essential for better understanding the African plate tectonics. Therefore, this study focusses on the determination of the African velocity fields using continuously operated GNSS stations. We processed and analyzed 11 years of data obtained from a total number of 145 GNSS site using GFZ’s EPOS.P8 software. The result shows that Africa moves in the North-East direction. The station coordinates derived with PPP show averaged RMS values of 2.9 mm, 9.9 mm and 8.5 mm for the north, east and up components with respect to the estimated trajectory models. Horizontal velocities at sites located on stable Nubia plate fit a single plate model with residual motion below 1 mm/year of RMS. We confirm significant southeast motion in Morocco and Zambia with residual velocities of 1.4 mm/year and 0.9 mm/year, respectively. We estimate the Euler Poles for Nubia and Somalia with 48.59°N, −78.64°E, 0.264°/Myr and 60.38°N, −83.33°E, 0.272°/Myr, respectively. Vertical velocities range from −2 to +2 mm/year, close to their uncertainties, with no distinct geographic pattern. The study also provides continental-wide position and velocity field solution for Africa, and can also be considered as a contribution to the upcoming AFREF, the African Geodetic Reference Frame.

Publisher

Springer Berlin Heidelberg

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3