Molodensky’s and Helmert’s Theories: Two Equivalent Geodetic Approaches to the Determination of the Gravity Potential and the Earth Surface

Author:

Sansó Fernando,Barzaghi Riccardo,Reguzzoni Mirko

Abstract

AbstractA fundamental problem of physical geodesy is the determination of the “Surface of the Earth” and its gravitational potential from various types of observations performed on the Earth surface S itself or in the outer space. When data are derived from gravimetry on S we speak of Molodensky’s problem. Since the gravity field depends linearly on its source, i.e. the mass distribution, it follows that we can manipulate the (unknown) internal density in a known way and still return to the same external solution once the effects of the manipulation have been eliminated (restored). This is used, in the frame of Molodensky’s theory, with the Residual Terrain Correction that is removed (and then restored) before approximating the solution by some regularized (collocation or other) approach. Differently, Helmert’s approach shifts the masses of the topographic layer, compressing them to some internal surface and substituting their effects on gravity by that of a single layer. Data are thus lowered to some internal ellipsoid or sphere and a solution is then easily computed. The effects of the internal changes are then inverted and added back to the solution. Despite the apparent completely different approach one can prove that the final solutions, when data are given continuously on the boundary and the errors are made to tend to zero, converge to the true potential on the surface S and then in the outer space. So the two solutions are geodetically equivalent and do not create any scientific conflict. Different is what happens inside S, down to the geoid level. Here Helmert’s approach, that introduces the density of the topographic layer as data, is certainly less erroneous in approximating the true potential. Yet due to the imperfect knowledge of the density and even more to the ill-posedness of the downward continuation operator, the internal potential can have large errors, unless the solution is duly regularized and an appropriate tuning is introduced between the regularization parameter and the size of data errors.

Publisher

Springer Berlin Heidelberg

Reference28 articles.

1. Adams RA (1975) Sobolev spaces. Academic Press, New York

2. Brovar VV (1964) On the solutions of Molodensky’s boundary value problem. Bull Geodes 72:167–173

3. Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Report 355, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio

4. Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling. In: Lecture notes in earth system sciences: GBVP in view of the 1 cm geoid. Springer, Berlin, Heidelberg

5. Heck B (1989) A contribution to the scalar free boundary value problem of physical geodesy. Manuscripta Geodaetica 14:87–89

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3