How Do Atmospheric Tidal Loading Displacements Vary Temporally as well as Across Different Weather Models?

Author:

Balidakis Kyriakos,Sulzbach Roman,Dobslaw Henryk,Dill Robert

Abstract

AbstractWe assess the impact of varying the mass anomaly sources on the calculation of atmospheric tidal displacement harmonics. Atmospheric mass anomalies are obtained from five state-of-the-art numerical weather models (NWM): DWD’s ICON-Global, ECMWF’s IFS, JMA’s JRA55, ECMWF’s ERA5, and NASA’s MERRA2. To evaluate how the atmospheric tides’ representation in the different models displaces Earth’s crust, we calculate mass harmonics based on a fixed time span (2019.0–2022.0). To evaluate how temporally variable atmospheric tide manifestations are, we also applied a square-root-information filter on displacements spanning seven decades of ERA5. In addition, the variable harmonic atmospheric forcing is used to excite harmonic sea-surface variations employing the barotropic model TiME. The results from the analysis of the five numerical weather models as well as the monthly updated states of ERA5 harmonics are compared. We find that inter-model differences are larger than temporal harmonic modulations for all waves beating at frequencies higher than 1 cpd. We have confirmed that significant modulations are not an artefact in NWM but rather a true effect, and accounting for them might become of relevance for space geodesy at some point as soon as observations increase in spatio-temporal density and accuracy. The global RMS of radial displacements is 0.07 mm (SNR of 16.2 dB) for the “epoch” ensemble and 0.10 mm (SNR of 8.9 dB) for the “NWM” ensemble. We find discrepancies as large as 0.28 mm between harmonics from MERRA2 and early ERA5 batches, which we attribute to data sparsity in the in situ data assimilated into the NWM during the earlier years of the atmospheric reanalysis.

Publisher

Springer Berlin Heidelberg

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3