The Benefit of Accelerometers Based on Cold Atom Interferometry for Future Satellite Gravity Missions

Author:

Knabe AnnikeORCID,Schilling ManuelORCID,Wu HuORCID,HosseiniArani AlirezaORCID,Müller JürgenORCID,Beaufils Quentin,Pereira dos Santos FranckORCID

Abstract

AbstractSatellite gravity missions, like GRACE and GRACE Follow-On, successfully map the Earth’s gravity field and its change over time. With the addition of the laser ranging interferometer (LRI) to GRACE-FO, a significant improvement over GRACE for inter-satellite ranging was achieved. One of the limiting factors is the accelerometer for measuring the non-gravitational forces acting on the satellite. The classical electrostatic accelerometers are affected by a drift at low frequencies. This drawback can be counterbalanced by adding an accelerometer based on cold atom interferometry (CAI) due to its high long-term stability. The CAI concept has already been successfully demonstrated in ground experiments and is expected to show an even higher sensitivity in space.In order to investigate the potential of the CAI concept for future satellite gravity missions, a closed-loop simulation is performed in the context of GRACE-FO like missions. The sensitivity of the CAI accelerometer is estimated based on state-of-the-art ground sensors and predictions for space applications. The sensor performance is tested for different scenarios and the benefits to the gravity field solutions are quantitatively evaluated. It is shown that a classical accelerometer aided by CAI technology improves the results of the gravity field recovery especially in reducing the striping effects. The non-gravitational accelerations are modelled using a detailed surface model of a GRACE-like satellite body. This is required for a realistic determination of the variations of the non-gravitational accelerations during one interferometer cycle. It is demonstrated that the estimated error due to this variation is significant. We consider different orbit altitudes and also analyze the effect of drag compensation.

Publisher

Springer Berlin Heidelberg

Reference16 articles.

1. Abich K, Abramovici A, Amparan B, Baatzsch A, Okihiro BB, Barr DC, Bize MP, Bogan C, Braxmaier C, Burke MJ, Clark KC, Dahl C, Dahl K, Danzmann K, Davis MA, de Vine G, Dickson JA, Dubovitsky S, Eckardt A, Ester T, Barranco GF, Flatscher R, Flechtner F, Folkner WM, Francis S, Gilbert MS, Gilles F, Gohlke M, Grossard N, Guenther B, Hager P, Hauden J, Heine F, Heinzel G, Herding M, Hinz M, Howell J, Katsumura M, Kaufer M, Klipstein W, Koch A, Kruger M, Larsen K, Lebeda A, Lebeda A, Leikert T, Liebe CC, Liu J, Lobmeyer L, Mahrdt C, Mangoldt T, McKenzie K, Misfeldt M, Morton PR, Müller V, Murray AT, Nguyen DJ, Nicklaus K, Pierce R, Ravich JA, Reavis G, Reiche J, Sanjuan J, Schütze D, Seiter C, Shaddock D, Sheard B, Sileo M, Spero R, Spiers G, Stede G, Stephens M, Sutton A, Trinh J, Voss K, Wang D, Wang RT, Ware B, Wegener H, Windisch S, Woodruff C, Zender B, Zimmermann M (2019) In-orbit performance of the GRACE follow-on laser ranging interferometer. Phy Rev Lett 123(3):031101. https://doi.org/10.1103/PhysRevLett.123.031101

2. Abrykosov P, Pail R, Gruber T, Zahzam N, Bresson A, Hardy E, Christophe B, Bidel Y, Carraz O, Siemes C (2019) Impact of a novel hybrid accelerometer on satellite gravimetry performance. Adv Space Res 63(10):3235–3248. https://doi.org/10.1016/j.asr.2019.01.034

3. Canuto E, Molano A, Massotti L (2010) Drag-free control of the GOCE satellite: Noise and observer design. IEEE T Contr Syst T 18(2):501–509. https://doi.org/10.1109/TCST.2009.2020169

4. Dobslaw H, Bergmann-Wolf I, Dill R, Poropat L, Thomas M, Dahle C, Esselborn S, König R, Flechtner F (2017) A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys J Int 211(1):263–269. https://doi.org/10.1093/gji/ggx302

5. Foerste C, Bruinsma S, Abrykosov O, Lemoine JM, Marty JC, Flechtner F, Balmino F Gand Barthelmes, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ data services 10. https://doi.org/10.5880/icgem.2015.1

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3