Continuous Monitoring with a Superconducting Gravimeter As a Proxy for Water Storage Changes in a Mountain Catchment

Author:

Chaffaut Quentin,Hinderer Jacques,Masson Frédéric,Viville Daniel,Bernard Jean-Daniel,Cotel Solenn,Pierret Marie-Claire,Lesparre Nolwenn,Jeannot Benjamin

Abstract

AbstractIn mountainous area, spring water constitutes the only drinking water resource and local economy is highly dependent on forest health and productivity. However, climate change is expected to make extreme water shortage episodes more and more frequent. Forest is therefore more and more exposed to water stress. It appears necessary to quantify the drought induced by water deficit to evaluate forest vulnerability and to plan the future of forest management. In this study we quantified the 2018 water deficit experienced by the forest in the Strengbach catchment, located in the French Vosges mountains. Three methods for estimating catchment water storage changes (WSC) have been compared. The first relies on superconducting gravimeter monitoring while the second relies on catchment water balance. The third one relies on global hydrological model MERRA2. We show that WSC estimated from measured gravity changes correlate well with WSC estimated from catchment water balance while WSC inferred from MERRA2 significantly differs. The Strengbach catchment water cycle is mostly annual but exhibits significant interannual variability associated with the 2018 drought episode: August 2018 has a water deficit of 37 mm (as inferred from catchment water balance) or 76 mm (as seen with superconducting gravimetry) compared to August 2017. We illustrate here the use of superconducting gravimeter monitoring as an independent proxy for WSC in a mountainous catchment while most of hydro-gravimetric studies have been conducted on relatively flat areas. We therefore contribute to expand the area of use of high precision gravity monitoring for the hydrological characterization of the critical zone in mountainous context. This innovative method may help to assess forest vulnerability to drought in the context of climate change.

Publisher

Springer Berlin Heidelberg

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3