Microscopic Quantum Jump: An Interpretation of Measurement Problem

Author:

Nakajima Tadashi

Abstract

AbstractNearly a century has passed, since the birth of quantum mechanics, and yet the measurement problem has not been solved. We investigate the measurement problem from two aspects. First we scrutinize the basic postulates adopted by existing theories and identify the postulate of classicality of apparatus (PCA) to be the origin of the trouble. Second, we analyze the simplest possible experimental setup, a single photon particle as an observed system S and a detector as an apparatus A, and we find that a quantum jump occurs as a microscopic interaction between S and a single particle in A. We call this a microscopic quantum jump (MIJ). The MIJ selects system eigenvalues (SEVs) such as a two-dimensional position and arrival time for an incident photon. The MIJ outputs a microscopic particle (MIP), which carries the information of the SEVs potentially. In the apparatus A, the MIP triggers amplification cascade of secondary particles, which we call the intermediate particles (IMPs). The IMPs are initially a few, but become plenty after the amplification. The output of the amplification is a macroscopic observable (MAO) such as a current pulse, which carries the information of the SEVs in actuality. The measurement is complete when the MAO is obtained. By adopting the postulate of the MIJ and by discarding the PCA, we have constructed a measurement theory, which is consistent with standard quantum mechanics.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3