Operator Space Manifold Theory: Modeling Quantum Operators with a Riemannian Manifold

Author:

Nowaskie Gabriel

Abstract

AbstractThe Half-Transform Ansatz (HTA) is a proposed method to solve hyper-geometric equations in Quantum Phase Space by transforming a differential operator to an algebraic variable and including a specific exponential factor in the wave function, but the mechanism which provides this solution scheme is not known. Analysis of the HTA’s application to the Hydrogen atom suggests an underlying mechanism which the HTA is a part of. Observations of exponential factors that act on the wave function naturally suggest modeling quantum operator definitions as a point on a Riemannian manifold in the 4D Operator Space, a novel idea we call the Operator Space Manifold Theory. On this manifold, we explore the concepts of superposition, regions of unique energy eigenvalues, and translation operators. We also find the theoretical backing to derive the HTA and how Operator Space Manifold Theory can be used to describe and solve quantum systems by manipulating how a quantum state perceives position and momentum.

Funder

Western Kentucky University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3