Trust-Based Collaborative Filtering
Author:
Publisher
Springer US
Link
http://link.springer.com/content/pdf/10.1007/978-0-387-09428-1_8.pdf
Reference20 articles.
1. J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering recom-mender systems. In ACM Transactions on Information Systems, volume 22, pages 5-53. ACM Press, 2004.
2. M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic networks. In In Proceedings of Int. Conference on Software Engineering and Formal Methods, (SEFM), 2003.
3. Daniele Quercia, Manish Lad, Stephen Hailes, Licia Capra, and Saleem Bhatti. Strudel: Supporting trust in the dynamic establishment of peering coalitions. In Proceedings of the 21st ACM Symposium on Applied Computing, pages 1870-1874, Dijon, France, April 2006.
4. L. Yan, S. Hailes, and L. Capra. Analysis of packet relaying models and incentive strategies in wireless ad hoc networks with game theory. In Proc. IEEE 22nd International Conference on Advanced Information Networking and Applications (AINA08), GinoWan, Okinawa, Japan, March 2008. IEE Computer Society.
5. J.B. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-commerce. In Proceedings of the ACM Conference on Electronic Commerce, 1999.
Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Design of a dynamic and robust recommender system based on item context, trust, rating matrix and rating time using social networks analysis;Journal of King Saud University - Computer and Information Sciences;2024-02
2. User Similarity Computation Strategy for Collaborative Filtering Using Word Sense Disambiguation Technique;The Fourth Industrial Revolution and Beyond;2023
3. Towards a new POI Recommendation Approach based on Implicit Trust between users;2022 First International Conference on Big Data, IoT, Web Intelligence and Applications (BIWA);2022-12-11
4. Enhancing the aggregate diversity with mutual trust computations for context-aware recommendations;Sādhanā;2022-02-02
5. The State of the Art Techniques in Recommendation Systems;Applied Computational Technologies;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3