Free Boundary Minimal Annuli Immersed in the Unit Ball

Author:

Fernández Isabel,Hauswirth Laurent,Mira PabloORCID

Abstract

AbstractWe construct a family of compact free boundary minimal annuli immersed in the unit ball $$\mathbb {B}^3$$ B 3 of $$\mathbb {R}^3$$ R 3 , the first such examples other than the critical catenoid. This solves a problem formulated by Nitsche in 1985. These annuli are symmetric with respect to two orthogonal planes and a finite group of rotations around an axis, and are foliated by spherical curvature lines. We show that the only free boundary minimal annulus embedded in $$\mathbb {B}^3$$ B 3 foliated by spherical curvature lines is the critical catenoid; in particular, the minimal annuli that we construct are not embedded. On the other hand, we also construct families of non-rotational compact embedded capillary minimal annuli in $$\mathbb {B}^3$$ B 3 . Their existence solves in the negative a problem proposed by Wente in 1995.

Funder

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Reference38 articles.

1. Abresch, U.: Constant mean curvature tori in terms of elliptic functions. J. Reine Angew. Math. 394, 169–192, 1987

2. Ambrozio, L., Nunes, I.: A gap theorem for free boundary minimal surfaces in the three-ball. Commun. Anal. Geom. 29, 283–292, 2021

3. Carlotto, A., Franz, G., Schulz, M.B.: Free boundary minimal surfaces with connected boundary and arbitrary genus. Cambridge J. Math. 10, 835–857, 2022

4. Carlotto, A., Schulz, M.B., Wiygul, D.: Infinitely many pairs of free boundary minimal surfaces with the same topology and symmetry group. Mem. Amer. Math. Soc., to appear, arXiv:2205.04861

5. Chandrasekharan, K.: Elliptic Functions, Grundlehren der mathematischen Wissenschaften, vol. 281. Springer Verlag, Berlin (1985)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3