First Integrals and Symmetries of Nonholonomic Systems

Author:

Balseiro Paula,Sansonetto NicolaORCID

Abstract

AbstractIn nonholonomic mechanics, the presence of constraints in the velocities breaks the well-understood link between symmetries and first integrals of holonomic systems, expressed by Noether’s Theorem. However, there is a known special class of first integrals of nonholonomic systems generated by vector fields tangential to the group orbits, called horizontal gauge momenta, that suggests that some version of this link still holds. In this paper we prove that, under certain conditions on the symmetry group and the system, the (nonholonomic) momentum map is conserved along the nonholonomic dynamics, thus extending Noether’s Theorem to the nonholonomic framework. Our analysis leads to a constructive method, with fundamental consequences to the integrability of some nonholonomic systems as well as their hamiltonization. We apply our results to three paradigmatic examples: the snakeboard, a solid of revolution rolling without sliding on a plane, and a heavy homogeneous ball that rolls without sliding inside a convex surface of revolution.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Reference59 articles.

1. Agostinelli, C.: Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocità. Boll. Un. Mat. Ital. 11, 1–9, 1956

2. Ashwin, P., Melbourne, I.: Noncompact drift for relative equilibria and relative periodic orbits. Nonlinearity 10, 595–616, 1997

3. Arnold, V.I., Kozlov, V.V., Neistadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Encycl. of Mathem. Seien., Vol. 3. Springer, 1989

4. Balseiro, P.: The Jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets. Arch. Ration. Mech. Anal. 214, 453–501, 2014

5. Balseiro, P.: Hamiltonization of solids of revolution through reduction. J. Nonlinear Sci. 27, 2001–2035, 2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3