Author:
Aleksanyan Gohar,Kuusi Tuomo
Abstract
AbstractIn this manuscript we prove quantitative homogenization results for the obstacle problem with bounded measurable coefficients. As a consequence, large-scale regularity results both for the solution and the free boundary for the heterogeneous obstacle problem are derived.
Funder
Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta
European Research Council
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Andersson, J.: The Obstacle Problem. YSU Math School Series, 2016.
2. Andersson, J.: Optimal regularity for the signorini problem and its free boundary. Invent. Math. 204(1), 1–82, 2016
3. Armstrong, S., Gloria, A., Kuusi, T.: Bounded correctors in almost periodic homogenization. Arch. Ration. Mech. Anal. 222(1), 393–426, 2016
4. Armstrong, S., Kuusi, T.: Elliptic homogenization from qualitative to quantitative. 2022. arXiv:2210.06488.
5. Armstrong, S., Kuusi, T., Mourrat, J.-C.: Mesoscopic higher regularity and subadditivity in elliptic homogenization. Commun. Math. Phys. 347(2), 315–361, 2016