Quasiconvex Functionals of (p, q)-Growth and the Partial Regularity of Relaxed Minimizers

Author:

Gmeineder Franz,Kristensen Jan

Abstract

AbstractWe establish $$\textrm{C}^{\infty }$$ C -partial regularity results for relaxed minimizers of strongly quasiconvex functionals $$\begin{aligned} \mathscr {F}[u;\Omega ]:=\int _{\Omega }F(\nabla u)\textrm{d}x,\qquad u:\Omega \rightarrow \mathbb {R}^{N}, \end{aligned}$$ F [ u ; Ω ] : = Ω F ( u ) d x , u : Ω R N , subject to a q-growth condition $$|F(z)|\leqq c(1+|z|^{q})$$ | F ( z ) | c ( 1 + | z | q ) , $$z\in \mathbb {R}^{N\times n}$$ z R N × n , and natural p-mean coercivity conditions on $$F\in \textrm{C}^{\infty }(\mathbb {R}^{N\times n})$$ F C ( R N × n ) for the basically optimal exponent range $$1\leqq p\leqq q<\min \{\frac{np}{n-1},p+1\}$$ 1 p q < min { np n - 1 , p + 1 } . With the p-mean coercivity condition being stated in terms of a strong quasiconvexity condition on F, our results include pointwise (pq)-growth conditions as special cases. Moreover, we directly allow for signed integrands which is natural in view of coercivity considerations and hence the direct method, but is novel in the study of relaxed problems. In the particular case of classical pointwise (pq)-growth conditions, our results extend the previously known exponent range from Schmidt’s foundational work (Schmidt in Arch Ration Mech Anal 193:311–337, 2009) for non-negative integrands to the maximal range for which relaxations are meaningful, moreover allowing for $$p=1$$ p = 1 . We also emphasize that our results apply to the canonical class of signed integrands and do not rely in any way on measure representations à la Fonseca and Malý (Ann Inst Henri Poincaré Anal Non Linéaire 14:309–338, 1997).

Funder

Hector Stiftung II

Universität Konstanz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3