The Dean–Kawasaki Equation and the Structure of Density Fluctuations in Systems of Diffusing Particles

Author:

Cornalba FedericoORCID,Fischer JulianORCID

Abstract

AbstractThe Dean–Kawasaki equation—a strongly singular SPDE—is a basic equation of fluctuating hydrodynamics; it has been proposed in the physics literature to describe the fluctuations of the density of N independent diffusing particles in the regime of large particle numbers $$N\gg 1$$ N 1 . The singular nature of the Dean–Kawasaki equation presents a substantial challenge for both its analysis and its rigorous mathematical justification. Besides being non-renormalisable by the theory of regularity structures by Hairer et al., it has recently been shown to not even admit nontrivial martingale solutions. In the present work, we give a rigorous and fully quantitative justification of the Dean–Kawasaki equation by considering the natural regularisation provided by standard numerical discretisations: We show that structure-preserving discretisations of the Dean–Kawasaki equation may approximate the density fluctuations of N non-interacting diffusing particles to arbitrary order in $$N^{-1}$$ N - 1 (in suitable weak metrics). In other words, the Dean–Kawasaki equation may be interpreted as a “recipe” for accurate and efficient numerical simulations of the density fluctuations of independent diffusing particles.

Funder

Austrian Science Fund

Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Reference38 articles.

1. Banas, L., Gess, B., Vieth, C.: Numerical approximation of singular-degenerate parabolic stochastic pdes. arXiv preprint arXiv:2012.12150, 2020

2. Cornalba, F., Fischer, J., Ingmanns, J., Raithel, C.: Density fluctuations in weakly interacting particle systems via the Dean–Kawasaki equation. arXiv preprint arXiv:2303.00429, 2023

3. Cornalba, F., Shardlow, T.: The regularised inertial Dean-Kawasaki equation: discontinuous galerkin approximation and modelling for low-density regime. arXiv preprint: arxiv:2207.09989, 2022

4. Cornalba, F., Shardlow, T., Zimmer, J.: A regularized Dean–Kawasaki model: derivation and analysis. SIAM J. Math. Anal. 51(2), 1137–1187, 2019

5. Cornalba, F., Shardlow, T., Zimmer, J.: From weakly interacting particles to a regularised Dean–Kawasaki model. Nonlinearity 33(2), 864–891, 2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3