Higher-Order Linearization and Regularity in Nonlinear Homogenization

Author:

Armstrong Scott,Ferguson Samuel J.,Kuusi Tuomo

Abstract

AbstractWe prove large-scale $$C^\infty $$C regularity for solutions of nonlinear elliptic equations with random coefficients, thereby obtaining a version of the statement of Hilbert’s 19th problem in the context of homogenization. The analysis proceeds by iteratively improving three statements together: (i) the regularity of the homogenized Lagrangian $$\overline{L}$$L¯, (ii) the commutation of higher-order linearization and homogenization, and (iii) large-scale $$C^{0,1}$$C0,1-type regularity for higher-order linearization errors. We consequently obtain a quantitative estimate on the scaling of linearization errors, a Liouville-type theorem describing the polynomially-growing solutions of the system of higher-order linearized equations, and an explicit (heterogenous analogue of the) Taylor series for an arbitrary solution of the nonlinear equations—with the remainder term optimally controlled. These results give a complete generalization to the nonlinear setting of the large-scale regularity theory in homogenization for linear elliptic equations.

Funder

National Science Foundation

European Research Council

Academy of Finland

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models;Electronic Journal of Probability;2024-01-01

2. Quantitative Nonlinear Homogenization: Control of Oscillations;Archive for Rational Mechanics and Analysis;2023-07-16

3. Quantitative homogenization of interacting particle systems;The Annals of Probability;2022-09-01

4. Smoothness of the diffusion coefficients for particle systems in continuous space;Communications in Contemporary Mathematics;2022-08-24

5. Quantitative hydrodynamic limits of the Langevin dynamics for gradient interface models;Séminaire Laurent Schwartz — EDP et applications;2022-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3