On the Linearized System of Equations for the Condensate-Normal Fluid Interaction Near the Critical Temperature

Author:

Escobedo M.ORCID

Abstract

AbstractThe Cauchy problem for the linearization around one of its equilibria of a non linear system of equations, arising in the kinetic theory of a condensed gas of bosons near the critical temperature, is solved for radially symmetric initial data. As time tends to infinity, the solutions are proved to converge to an equilibrium of the same linear system, determined by the conservation of total mass and energy. The asymptotic limit of the condensate’s density is proved to be larger or smaller than its initial value under a simple and explicit criteria on the initial data. For a large set of initial data, and for values of the momentum variable near the origin, the linear approximation n(t) of the density of the normal fluid behaves instantaneously as the equilibria of the non linear system.

Funder

MINECO

Basque Government

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3