Author:
Bellettini Giovanni,Freguglia Mattia,Picenni Nicola
Abstract
AbstractIn 1991 De Giorgi conjectured that, given $$\lambda >0$$
λ
>
0
, if $$\mu _\varepsilon $$
μ
ε
stands for the density of the Allen-Cahn energy and $$v_\varepsilon $$
v
ε
represents its first variation, then $$\int [v_\varepsilon ^2 + \lambda ] d\mu _\varepsilon $$
∫
[
v
ε
2
+
λ
]
d
μ
ε
should $$\Gamma $$
Γ
-converge to $$c\lambda {\text {Per}}(E) + k \mathcal {W}(\Sigma )$$
c
λ
Per
(
E
)
+
k
W
(
Σ
)
for some real constant k, where $${\text {Per}}(E)$$
Per
(
E
)
is the perimeter of the set E, $$\Sigma =\partial E$$
Σ
=
∂
E
, $$\mathcal {W}(\Sigma )$$
W
(
Σ
)
is the Willmore functional, and c is an explicit positive constant. A modified version of this conjecture was proved in space dimensions 2 and 3 by Röger and Schätzle, when the term $$\int v_\varepsilon ^2 \, d\mu _\varepsilon $$
∫
v
ε
2
d
μ
ε
is replaced by $$ \int v_\varepsilon ^2 {\varepsilon }^{-1} dx$$
∫
v
ε
2
ε
-
1
d
x
, with a suitable $$k>0$$
k
>
0
. In the present paper we show that, surprisingly, the original De Giorgi conjecture holds with $$k=0$$
k
=
0
. Further properties of the limit measures obtained under a uniform control of the approximating energies are also provided.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mathematics (miscellaneous),Analysis
Reference16 articles.
1. Ambrosio, L.: Geometric evolution problems, distance function and viscosity solutions. In: Calculus of Variations and Partial Differential Equations (Pisa, 1996). Springer, Berlin, pp. 5–93, 2000
2. Bellettini, G., Mugnai, L.: On the approximation of the elastica functional in radial symmetry. Calc. Var. Partial Differ. Equ. 24(1), 1–20, 2005
3. Bellettini, G., Nayam, A., Novaga, M.: $$\Gamma $$-type estimates for the one-dimensional Allen-Cahn’s action. Asymptot. Anal. 94(1–2), 161–185, 2015
4. Bellettini, G., Paolini, M.: Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell’Università di Bologna. Tecnoprint Bologna, pp. 87–97, 1993
5. Bretin, E., Masnou, S., Oudet, É.: Phase-field approximations of the Willmore functional and flow. Numer. Math. 131(1), 115–171, 2015