Abstract
AbstractWe study optimal regularity and free boundary for minimizers of an energy functional arising in cohesive zone models for fracture mechanics. Under smoothness assumptions on the boundary conditions and on the fracture energy density, we show that minimizers are $$C^{1, 1/2}$$C1,1/2, and that near non-degenerate points the fracture set is $$C^{1, \alpha }$$C1,α, for some $$\alpha \in (0, 1)$$α∈(0,1).
Funder
Engineering and Physical Sciences Research Council
Directorate for Mathematical and Physical Sciences
European Research Council
Fundação para a Ciência e a Tecnologia
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mathematics (miscellaneous),Analysis
Reference25 articles.
1. Allen, M.: Separation of a lower dimensional free boundary in a two-phase problem. Math. Res. Lett. 19(5), 1055–1074, 2012
2. Allen, M., Lindgren, E., Petrosyan, A.: The two-phase fractional obstacle problem. SIAM J. Math. Anal. 47(3), 1879–1905, 2015
3. Allen, M., Petrosyan, A.: A two-phase problem with a lower-dimensional free boundary. Interfaces Free Bound. 14(3), 307–342, 2012
4. Artina, M., Cagnetti, F., Fornasier, M., Solombrino, F.: Linearly constrained evolutions of critical points and an application to cohesive fractures. Math. Models Methods Appl. Sci. 27(2), 231–290, 2017
5. Athanasopoulos, I., Caffarelli, L.: Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts 35 [34], 49-66, 226
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献