Global Schauder Estimates for the $$\mathbf {p}$$-Laplace System

Author:

Breit D.ORCID,Cianchi A.,Diening L.,Schwarzacher S.

Abstract

AbstractAn optimal first-order global regularity theory, in spaces of functions defined in terms of oscillations, is established for solutions to Dirichlet problems for the p-Laplace equation and system, with the right-hand side in divergence form. The exact mutual dependence among the regularity of the solution, of the datum on the right-hand side, and of the boundary of the domain in these spaces is exhibited. A comprehensive formulation of our results is given in terms of Campanato seminorms. New regularity results in customary function spaces, such as Hölder, $$\text {BMO}$$ BMO and $${{\,\mathrm{VMO}\,}}$$ VMO spaces, follow as a consequence. Importantly, the conclusions are new even in the linear case when $$p=2$$ p = 2 , and hence the differential operator is the plain Laplacian. Yet in this classical linear setting, our contribution completes and augments the celebrated Schauder theory in Hölder spaces. A distinctive trait of our results is their sharpness, which is demonstrated by a family of apropos examples.

Funder

Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften

Ministero dell’Istruzione, dell’Università e della Ricerca

Centro universitario di ricerca e formazione per lo sviluppo competitivo delle imprese del settore vitivinicolo italiano, Universitá degli Studi di Firenze

Primus Reserach Grant

Deutsche Forschungsgemeinschaft

Ministerstvo Vnitra Ceské Republiky

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward Weighted Lorentz–Sobolev Capacities from Caffarelli–Silvestre Extensions;The Journal of Geometric Analysis;2024-03-12

2. Weak error analysis for the stochastic Allen–Cahn equation;Stochastics and Partial Differential Equations: Analysis and Computations;2024-02-22

3. Global regularity for nonlinear systems with symmetric gradients;Calculus of Variations and Partial Differential Equations;2024-02-16

4. Gradient estimates for singular $p$-Laplace type equations with measure data;Journal of the European Mathematical Society;2023-12-12

5. A general notion of uniform ellipticity and the regularity of the stress field for elliptic equations in divergence form;Analysis & PDE;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3