Pattern-Selective Feedback Stabilization of Ginzburg–Landau Spiral Waves

Author:

Schneider Isabelle,de Wolff Babette,Dai Jia-YuanORCID

Abstract

AbstractThe complex Ginzburg–Landau equation serves as a paradigm of pattern formation and the existence and stability properties of Ginzburg–Landau m-armed spiral waves have been investigated extensively. However, many multi-armed spiral waves are unstable and thereby rarely visible in experiments and numerical simulations. In this article we selectively stabilize certain significant classes of unstable spiral waves within circular and spherical geometries. As a result, stable spiral waves with an arbitrary number of arms are obtained for the first time. Our tool for stabilization is the symmetry-breaking control triple method, which is an equivariant generalization of the widely applied Pyragas control to the setting of PDEs.

Funder

Ministry of Science and Technology, Taiwan

Deutsche Forschungsgemeinschaft

Berlin Mathematical School

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivariant Pyragas Control of Discrete Waves;SIAM Journal on Mathematical Analysis;2023-11-02

2. Controlling pulse stability in singularly perturbed reaction-diffusion systems;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-08-01

3. Symmetry groupoids for pattern-selective feedback stabilization of the Chafee–Infante equation;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3