Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier–Stokes/Allen–Cahn System

Author:

Abels HelmutORCID,Fischer Julian,Moser Maximilian

Abstract

AbstractWe show convergence of the Navier–Stokes/Allen–Cahn system to a classical sharp interface model for the two-phase flow of two viscous incompressible fluids with same viscosities in a smooth bounded domain in two and three space dimensions as long as a smooth solution of the limit system exists. Moreover, we obtain error estimates with the aid of a relative entropy method. Our results hold provided that the mobility $$m_\varepsilon >0$$ m ε > 0 in the Allen–Cahn equation tends to zero in a subcritical way, i.e., $$m_\varepsilon = m_0 \varepsilon ^\beta $$ m ε = m 0 ε β for some $$\beta \in (0,2)$$ β ( 0 , 2 ) and $$m_0>0$$ m 0 > 0 . The proof proceeds by showing via a relative entropy argument that the solution to the Navier–Stokes/Allen–Cahn system remains close to the solution of a perturbed version of the two-phase flow problem, augmented by an extra mean curvature flow term $$m_\varepsilon H_{\Gamma _t}$$ m ε H Γ t in the interface motion. In a second step, it is easy to see that the solution to the perturbed problem is close to the original two-phase flow.

Funder

HORIZON EUROPE European Research Council

Universität Regensburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3