The Rayleigh–Bénard Problem for Compressible Fluid Flows

Author:

Feireisl Eduard,Świerczewska-Gwiazda AgnieszkaORCID

Abstract

AbstractWe consider the physically relevant fully compressible setting of the Rayleigh–Bénard problem of a fluid confined between two parallel plates, heated from the bottom, and subjected to gravitational force. Under suitable restrictions imposed on the constitutive relations we show that this open system is dissipative in the sense of Levinson, meaning there exists a bounded absorbing set for any global-in-time weak solution. In addition, global-in-time trajectories are asymptotically compact in suitable topologies and the system possesses a global compact trajectory attractor $$\mathcal {A}$$ A . The standard technique of Krylov and Bogolyubov then yields the existence of an invariant measure—a stationary statistical solution sitting on $$\mathcal {A}$$ A . In addition, the Birkhoff–Khinchin ergodic theorem provides convergence of ergodic averages of solutions belonging to $$\mathcal {A}$$ A a.s. with respect to the invariant measure.

Funder

Grantová Agentura Ceské Republiky

Simons Foundation

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mathematics (miscellaneous),Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3