Abstract
AbstractWe establish the future nonlinear stability of a large class of FLRW models as solutions to the Einstein-Dust system. We consider the case of a vanishing cosmological constant, which, in particular implies that the expansion rate of the respective models is linear, i.e. has zero acceleration. The resulting spacetimes are future globally regular. These solutions constitute the first generic class of future regular Einstein-Dust spacetimes not undergoing accelerated expansion and are thereby the slowest expanding generic family of future complete Einstein-Dust spacetimes currently known.
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Andersson, L., Fajman, D.: Nonlinear stability of the Milne model with matter. Comm. Math. Phys. 378(1), 261–298, 2020
2. Andersson, L., Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equations. Ann. Henri Poincaré 4(1), 1–34, 2003
3. Andersson, L., Moncrief, V.: Einstein spaces as attractors for the Einstein flow. J. Differ. Geom. 89(1), 1–47, 2011
4. Besse, A.L.: Einstein Manifolds, vol. 10. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1987)
5. Branding, V., Fajman, D., Kröncke, K.: Stable cosmological Kaluza-Klein spacetimes. Comm. Math. Phys. 368(3), 1087–1120, 2019