Abstract
AbstractPerhaps the most classical diffusion model for chemotaxis is the Keller–Segel system We consider the critical mass case $$\int _{{\mathbb {R}}^2} u_0(x)\, \textrm{d}x = 8\pi $$
∫
R
2
u
0
(
x
)
d
x
=
8
π
, which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function $$u_0^*$$
u
0
∗
with mass $$8\pi $$
8
π
such that for any initial condition $$u_0$$
u
0
sufficiently close to $$u_0^*$$
u
0
∗
and mass $$8\pi $$
8
π
, the solution u(x, t) of ($$*$$
∗
) is globally defined and blows-up in infinite time. As $$t\rightarrow +\infty $$
t
→
+
∞
it has the approximate profile $$\begin{aligned} u(x,t) \approx \frac{1}{\lambda ^2(t)} U\left( \frac{x-\xi (t)}{\lambda (t)} \right) , \quad U(y)= \frac{8}{(1+|y|^2)^2}, \end{aligned}$$
u
(
x
,
t
)
≈
1
λ
2
(
t
)
U
x
-
ξ
(
t
)
λ
(
t
)
,
U
(
y
)
=
8
(
1
+
|
y
|
2
)
2
,
where $$\lambda (t) \approx \frac{c}{\sqrt{\log t}}$$
λ
(
t
)
≈
c
log
t
, $$\xi (t)\rightarrow q$$
ξ
(
t
)
→
q
for some $$c>0$$
c
>
0
and $$q\in {\mathbb {R}}^2$$
q
∈
R
2
. This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).
Funder
Royal Society
UK Research and Innovation
Engineering and Physical Sciences Research Council
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743, 1998
2. Biler, P., Karch, G., Laurençot, P., Nadzieja, T.: The $$8\pi $$-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29, 1563–1583, 2006
3. Blanchet, A.: On the parabolic–elliptic Patlak–Keller–Segel system in dimension 2 and higher. In: Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2011–2012, Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, pp. Exp. No. VIII, 26, 2013.
4. Blanchet, A., Carrillo, J.A., Masmoudi, N.: Infinite time aggregation for the critical Patlak–Keller–Segel model in $$\mathbb{R} ^2$$. Commun. Pure Appl. Math. 61, 1449–1481, 2008
5. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ., pp. No. 44, 32 (2006)