Existence and Stability of Infinite Time Blow-Up in the Keller–Segel System

Author:

Dávila JuanORCID,del Pino Manuel,Dolbeault Jean,Musso Monica,Wei Juncheng

Abstract

AbstractPerhaps the most classical diffusion model for chemotaxis is the Keller–Segel system We consider the critical mass case $$\int _{{\mathbb {R}}^2} u_0(x)\, \textrm{d}x = 8\pi $$ R 2 u 0 ( x ) d x = 8 π , which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function $$u_0^*$$ u 0 with mass $$8\pi $$ 8 π such that for any initial condition $$u_0$$ u 0 sufficiently close to $$u_0^*$$ u 0 and mass $$8\pi $$ 8 π , the solution u(xt) of ($$*$$ ) is globally defined and blows-up in infinite time. As $$t\rightarrow +\infty $$ t + it has the approximate profile $$\begin{aligned} u(x,t) \approx \frac{1}{\lambda ^2(t)} U\left( \frac{x-\xi (t)}{\lambda (t)} \right) , \quad U(y)= \frac{8}{(1+|y|^2)^2}, \end{aligned}$$ u ( x , t ) 1 λ 2 ( t ) U x - ξ ( t ) λ ( t ) , U ( y ) = 8 ( 1 + | y | 2 ) 2 , where $$\lambda (t) \approx \frac{c}{\sqrt{\log t}}$$ λ ( t ) c log t , $$\xi (t)\rightarrow q$$ ξ ( t ) q for some $$c>0$$ c > 0 and $$q\in {\mathbb {R}}^2$$ q R 2 . This result affirmatively answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun Pure Appl Math 71:1957–2015, 2018).

Funder

Royal Society

UK Research and Innovation

Engineering and Physical Sciences Research Council

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3