1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2005
2. Arsenev, A.: Existence in the large of a weak solution to the Vlasov system of equations. Zh. Vychisl. Mat. i Mat. Fiz. 15, 136–147, 1975
3. Bardos, C., Degond, P.: Existence globale des solutions des équations de Vlasov-Poisson. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. VII (Paris, 1983–1984). Research Notes in Mathematics, Vol. 122, 1–3, 35–58. Pitman, Boston, MA, 1985
4. Bardos, C., Degond, P.: Global existence for the Vlasov–Poisson equation in 3 space variables with small initial data. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(2), 101–118, 1985
5. Bardos, C., Degond, P., Golse, F.: A priori estimates and existence results for the Vlasov and Boltzmann equations. In Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 2 (Santa Fe, N.M., 1984). Lectures in Applied Mathematics, Vol. 23, 189–207. American Mathematical Society, Providence, RI, 1986