1. Astala, K., Clop, A., Faraco, D., Jääskeläinen, J., Koski, A.: Improved Hölder regularity for strongly elliptic PDEs. arXiv:1906.10906, 2019
2. Ambrosio, L., De Lellis, C., Mantegazza, C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Differ. Equ. 9(4), 327–355, 1999
3. Aviles, P., Giga, Y.: A mathematical problem related to the physical theory of liquid crystal configurations. In: Miniconference on Geometry and Partial Differential Equations, 2 (Canberra, 1986), Volume 12 of Proceedings of Centre for Mathematical Analysis, Australian National University, pp. 1–16. Australian National University, Canberra, 1987
4. Aviles, P., Giga, Y.: The distance function and defect energy. Proc. R. Soc. Edinb. Sect. A126(5), 923–938, 1996
5. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, volume 48 of Princeton Mathematical Series. Princeton University Press, Princeton 2009