Non-contact elastography methods in mechanobiology: a point of view

Author:

Caponi SilviaORCID,Passeri Alessandra,Capponi Giulio,Fioretto DanieleORCID,Vassalli MassimoORCID,Mattarelli MaurizioORCID

Abstract

AbstractIn recent decades, mechanobiology has emerged as a novel perspective in the context of basic biomedical research. It is now widely recognized that living cells respond not only to chemical stimuli (for example drugs), but they are also able to decipher mechanical cues, such as the rigidity of the underlying matrix or the presence of shear forces. Probing the viscoelastic properties of cells and their local microenvironment with sub-micrometer resolution is required to study this complex interplay and dig deeper into the mechanobiology of single cells. Current approaches to measure mechanical properties of adherent cells mainly rely on the exploitation of miniaturized indenters, to poke single cells while measuring the corresponding deformation. This method provides a neat implementation of the everyday approach to measure mechanical properties of a material, but it typically results in a very low throughput and invasive experimental protocol, poorly translatable towards three-dimensional living tissues and biological constructs. To overcome the main limitations of nanoindentation experiments, a radical paradigm change is foreseen, adopting next generation contact-less methods to measure mechanical properties of biological samples with sub-cell resolution. Here we briefly introduce the field of single cell mechanical characterization, and we concentrate on a promising high resolution optical elastography technique, Brillouin spectroscopy. This non-contact technique is rapidly emerging as a potential breakthrough innovation in biomechanics, but the application to single cells is still in its infancy.

Funder

royal society international exchange program

cnr- short term mobility 2019

Università degli Studi di Perugia

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Biophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3