Extracellular ionic fluxes suggest the basis for cellular life at the 1/f ridge of extended criticality

Author:

Pietruszka Mariusz,Olszewska Monika

Abstract

Abstract The criticality hypothesis states that a system may be poised in a critical state at the boundary between different types of dynamics. Previous studies have suggested that criticality has been evolutionarily selected, and examples have been found in cortical cell cultures and in the human nervous system. However, no one has yet reported a single- or multi-cell ensemble that was investigated ex vivo and found to be in the critical state. Here, the precise 1/f noise was found for pollen tube cells of optimum growth and for the physiological (“healthy”) state of blood cells. We show that the multi-scale processes that arise from the so-called critical phenomena can be a fundamental property of a living cell. Our results reveal that cell life is conducted at the border between order and disorder, and that the dynamics themselves drive a system towards a critical state. Moreover, a temperature-driven re-entrant state transition, manifest in the form of a Lorentz resonance, was found in the fluctuation amplitude of the extracellular ionic fluxes for the ensemble of elongating pollen tubes of Nicotiana tabacum L. or Hyacintus orientalis L. Since this system is fine-tuned for rapid expansion to reach the ovule at a critical temperature which results in fertilisation, the core nature of criticality (long-range coherence) offers an explanation for its potential in cell growth. We suggest that the autonomous organisation of expansive growth is accomplished by self-organised criticality, which is an orchestrated instability that occurs in an evolving cell. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Biophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3