Exact reconstruction of sparse non-harmonic signals from their Fourier coefficients

Author:

Petz Markus,Plonka GerlindORCID,Derevianko Nadiia

Abstract

AbstractIn this paper, we derive a new reconstruction method for real non-harmonic Fourier sums, i.e., real signals which can be represented as sparse exponential sums of the form $$f(t) = \sum _{j=1}^{K} \gamma _{j} \, \cos (2\pi a_{j} t + b_{j})$$ f ( t ) = j = 1 K γ j cos ( 2 π a j t + b j ) , where the frequency parameters $$a_{j} \in {\mathbb {R}}$$ a j R (or $$a_{j} \in {\mathrm i} {\mathbb {R}}$$ a j i R ) are pairwise different. Our method is based on the recently proposed numerically stable iterative rational approximation algorithm in Nakatsukasa et al. (SIAM J Sci Comput 40(3):A1494–A1522, 2018). For signal reconstruction we use a set of classical Fourier coefficients of f with regard to a fixed interval (0, P) with $$P>0$$ P > 0 . Even though all terms of f may be non-P-periodic, our reconstruction method requires at most $$2K+2$$ 2 K + 2 Fourier coefficients $$c_{n}(f)$$ c n ( f ) to recover all parameters of f. We show that in the case of exact data, the proposed iterative algorithm terminates after at most $$K+1$$ K + 1 steps. The algorithm can also detect the number K of terms of f, if K is a priori unknown and $$L \ge 2K+2$$ L 2 K + 2 Fourier coefficients are available. Therefore our method provides a new alternative to the known numerical approaches for the recovery of exponential sums that are based on Prony’s method.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of Eigenfrequencies of Ultrasonic Transducers in Pulse-echo Method;2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED);2023-09-11

2. Super-resolution of generalized spikes and spectra of confluent Vandermonde matrices;Applied and Computational Harmonic Analysis;2023-07

3. Prony Method for Reconstruction of Structured Functions;Numerical Fourier Analysis;2023

4. ESPRIT versus ESPIRA for reconstruction of short cosine sums and its application;Numerical Algorithms;2022-11-28

5. Super-Resolution of Generalized Spikes and Spectra of Confluent Vandermonde Matrices;SSRN Electronic Journal;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3