Abstract
AbstractIn this paper, we derive a new reconstruction method for real non-harmonic Fourier sums, i.e., real signals which can be represented as sparse exponential sums of the form $$f(t) = \sum _{j=1}^{K} \gamma _{j} \, \cos (2\pi a_{j} t + b_{j})$$
f
(
t
)
=
∑
j
=
1
K
γ
j
cos
(
2
π
a
j
t
+
b
j
)
, where the frequency parameters $$a_{j} \in {\mathbb {R}}$$
a
j
∈
R
(or $$a_{j} \in {\mathrm i} {\mathbb {R}}$$
a
j
∈
i
R
) are pairwise different. Our method is based on the recently proposed numerically stable iterative rational approximation algorithm in Nakatsukasa et al. (SIAM J Sci Comput 40(3):A1494–A1522, 2018). For signal reconstruction we use a set of classical Fourier coefficients of f with regard to a fixed interval (0, P) with $$P>0$$
P
>
0
. Even though all terms of f may be non-P-periodic, our reconstruction method requires at most $$2K+2$$
2
K
+
2
Fourier coefficients $$c_{n}(f)$$
c
n
(
f
)
to recover all parameters of f. We show that in the case of exact data, the proposed iterative algorithm terminates after at most $$K+1$$
K
+
1
steps. The algorithm can also detect the number K of terms of f, if K is a priori unknown and $$L \ge 2K+2$$
L
≥
2
K
+
2
Fourier coefficients are available. Therefore our method provides a new alternative to the known numerical approaches for the recovery of exponential sums that are based on Prony’s method.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Beinert, R., Plonka, G.: Sparse phase retrieval of one-dimensional signals by Prony’s method. Front. Appl. Math. Stat. 3(5), open access (2017)
2. Berent, J., Dragotti, P.L., Blu, T.: Sampling piecewise sinusoidal signals with finite rate of innovation methods. IEEE Trans. Signal Process. 58(2), 613–625 (2010)
3. Berg, L.: Lineare Gleichungssysteme mit Bandstruktur und ihr asymptotisches Verhalten. Deutscher Verlag der Wissenschaften, Berlin (1986)
4. Beylkin, G., Monzón, L.: On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)
5. Boßmann, F., Plonka, G., Peter, T., Nemitz, O., Schmitte, T.: Sparse deconvolution methods for ultrasonic NDT. J. Nondestruct. Eval. 31(3), 225–244 (2012)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献