Abstract
AbstractIn the note is shown that for the d-dimensional Bernstein functions class $$B_{\varvec{\sigma },d}^p,\, p>0$$
B
σ
,
d
p
,
p
>
0
the Plancherel–Pólya inequality holds with the constant which equals to the product of the constants occuring in the one-dimensional cases. Related truncation error upper bounds are precised in the irregular sampling restoration of functions in several variables.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Radiology, Nuclear Medicine and imaging,Signal Processing,Algebra and Number Theory,Analysis
Reference29 articles.
1. Berestova, E.V.: Plancherel–Pólya inequality for entire functions of exponential type in $$L^2({\mathbb{R} })$$. Anal. Math. 44(1), 43–50 (2018)
2. Berestova, E.V.: The Plancherel–Pólya inequality for entire functions of exponential type in $$L^2({\mathbb{R} }^n)$$. Tr. Inst. Mat. Mekh. 24(3), 27–33 (2018)
3. Boas, R.P.: Entire functions bounded on a line. Duke Math. J. 6, 148–169 (1940)
4. Donoho, D.L., Logan, B.F.: Signal recovery and the large sieve. SIAM J. Appl. Math. 52(2), 577–591 (1992)
5. Favier, S., Zalik, R.: On the stability of frames and Riesz bases. Appl. Comput. Harmon. Anal. 2, 160–173 (1995)