Tight bounds on the mutual coherence of sensing matrices for Wigner D-functions on regular grids

Author:

Bangun Arya,Behboodi ArashORCID,Mathar Rudolf

Abstract

AbstractMany practical sampling patterns for function approximation on the rotation group utilizes regular samples on the parameter axes. In this paper, we analyze the mutual coherence for sensing matrices that correspond to a class of regular patterns to angular momentum analysis in quantum mechanics and provide simple lower bounds for it. The products of Wigner d-functions, which appear in coherence analysis, arise in angular momentum analysis in quantum mechanics. We first represent the product as a linear combination of a single Wigner d-function and angular momentum coefficients, otherwise known as the Wigner 3j symbols. Using combinatorial identities, we show that under certain conditions on the bandwidth and number of samples, the inner product of the columns of the sensing matrix at zero orders, which is equal to the inner product of two Legendre polynomials, dominates the mutual coherence term and fixes a lower bound for it. In other words, for a class of regular sampling patterns, we provide a lower bound for the inner product of the columns of the sensing matrix that can be analytically computed. We verify numerically our theoretical results and show that the lower bound for the mutual coherence is larger than Welch bound. Besides, we provide algorithms that can achieve the lower bound for spherical harmonics.

Funder

DFG

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Radiology, Nuclear Medicine and imaging,Signal Processing,Algebra and Number Theory,Analysis

Reference35 articles.

1. Abel, N.H.: Untersuchungen über die Reihe: $$1 + (m/1)x + m\Delta (m - 1)/(1\Delta 2)\Delta x^2+ m\Delta (m - 1)\Delta (m - 2)/(1\Delta 2\Delta 3)^3+ ...$$. W. Engelmann, Leipzig (1895)

2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications Inc., New York (1965)

3. Adams, J.C.: On the expression of the product of any two Legendre’s coefficients by means of a series of Legendre’s coefficients. Proc. R. Soc. Lond. 27(1), 63–71 (1878)

4. Askey, R., Gasper, G.: Linearization of the product of Jacobi polynomials. III. Can. J. Math. 23(2), 332–338 (1971)

5. Bailey, W.N.: Generalized Hypergeometric Series. Stechert-Hafner Service Agency (1964)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Sensing Matrices for Spherical Near-Field Antenna Measurements;IEEE Transactions on Antennas and Propagation;2023-02

2. Compressed Sensing in the Spherical Near-Field to Far-Field Transformation;Compressed Sensing in Information Processing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3