Supervised learning of sheared distributions using linearized optimal transport

Author:

Khurana VarunORCID,Kannan Harish,Cloninger Alexander,Moosmüller Caroline

Abstract

AbstractIn this paper we study supervised learning tasks on the space of probability measures. We approach this problem by embedding the space of probability measures into $$L^2$$ L 2 spaces using the optimal transport framework. In the embedding spaces, regular machine learning techniques are used to achieve linear separability. This idea has proved successful in applications and when the classes to be separated are generated by shifts and scalings of a fixed measure. This paper extends the class of elementary transformations suitable for the framework to families of shearings, describing conditions under which two classes of sheared distributions can be linearly separated. We furthermore give necessary bounds on the transformations to achieve a pre-specified separation level, and show how multiple embeddings can be used to allow for larger families of transformations. We demonstrate our results on image classification tasks.

Funder

Division of Mathematical Sciences

Russell Sage Foundation

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Radiology, Nuclear Medicine and imaging,Signal Processing,Algebra and Number Theory,Analysis

Reference32 articles.

1. Aldroubi, A., Li, S., Rohde, G.K.: Partitioning signal classes using transport transforms for data analysis and machine learning. Sampl. Theory Signal Process. Data Anal. 19(6), 1–25 (2021)

2. Ambrosio, L., Gigli, N.: A User’s Guide to Optimal Transport, pp. 1–155. Springer, Berlin (2013)

3. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Piccoli, B., Rascle, M., Modelling and Optimisation of Flows on Networks, pp. 1–155. Springer (2013)

4. Ambrosio, L., Gigli, N., Giuseppe, S.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhauser, Basel (2005)

5. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Precup, D., Teh, Y.W. (Eds.) Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR (2017)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linearized Optimal Transport on Manifolds;SIAM Journal on Mathematical Analysis;2024-07-09

2. Approximation properties of slice-matching operators;Sampling Theory, Signal Processing, and Data Analysis;2024-05-17

3. Applications of No-Collision Transportation Maps in Manifold Learning;SIAM Journal on Mathematics of Data Science;2024-02-21

4. Capturing seismic velocity changes in receiver functions with optimal transport;Geophysical Journal International;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3