Abstract
AbstractWe prove that if $$I_\ell = [a_\ell ,b_\ell )$$
I
ℓ
=
[
a
ℓ
,
b
ℓ
)
, $$\ell =1,\ldots ,L$$
ℓ
=
1
,
…
,
L
, are disjoint intervals in [0, 1) with the property that the numbers $$1, a_1, \ldots , a_L, b_1, \ldots , b_L$$
1
,
a
1
,
…
,
a
L
,
b
1
,
…
,
b
L
are linearly independent over $${\mathbb {Q}}$$
Q
, then there exist pairwise disjoint sets $$\Lambda _\ell \subset {\mathbb {Z}}$$
Λ
ℓ
⊂
Z
, $$\ell =1, \ldots , L$$
ℓ
=
1
,
…
,
L
, such that for every $$J \subset \{ 1, \ldots , L \}$$
J
⊂
{
1
,
…
,
L
}
, the system $$\{e^{2\pi i \lambda x} : \lambda \in \cup _{\ell \in J} \, \Lambda _\ell \}$$
{
e
2
π
i
λ
x
:
λ
∈
∪
ℓ
∈
J
Λ
ℓ
}
is a Riesz basis for $$L^2 ( \cup _{\ell \in J} \, I_\ell )$$
L
2
(
∪
ℓ
∈
J
I
ℓ
)
. Also, we show that for any disjoint intervals $$I_\ell $$
I
ℓ
, $$\ell =1, \ldots , L$$
ℓ
=
1
,
…
,
L
, contained in [1, N) with $$N \in {\mathbb {N}}$$
N
∈
N
, the orthonormal basis $$\{e^{2\pi i n x} : n \in {\mathbb {Z}}\}$$
{
e
2
π
i
n
x
:
n
∈
Z
}
of $$L^2[0,1)$$
L
2
[
0
,
1
)
can be complemented by a Riesz basis $$\{e^{2\pi i \lambda x}: \lambda \in \Lambda \}$$
{
e
2
π
i
λ
x
:
λ
∈
Λ
}
for $$L^2(\cup _{\ell =1}^L \, I_{\ell })$$
L
2
(
∪
ℓ
=
1
L
I
ℓ
)
with some set $$\Lambda \subset (\frac{1}{N} {\mathbb {Z}}) \backslash {\mathbb {Z}}$$
Λ
⊂
(
1
N
Z
)
\
Z
, in the sense that their union $$\{e^{2\pi i \lambda x} : \lambda \in {\mathbb {Z}}\cup \Lambda \}$$
{
e
2
π
i
λ
x
:
λ
∈
Z
∪
Λ
}
is a Riesz basis for $$L^2 ( [0,1) \cup I_1 \cup \cdots \cup I_L )$$
L
2
(
[
0
,
1
)
∪
I
1
∪
⋯
∪
I
L
)
.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Radiology, Nuclear Medicine and imaging,Signal Processing,Algebra and Number Theory,Analysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献