On numerical realizations of Shannon’s sampling theorem

Author:

Kircheis MelanieORCID,Potts DanielORCID,Tasche Manfred

Abstract

AbstractIn this paper, we discuss some numerical realizations of Shannon’s sampling theorem. First we show the poor convergence of classical Shannon sampling sums by presenting sharp upper and lower bounds on the norm of the Shannon sampling operator. In addition, it is known that in the presence of noise in the samples of a bandlimited function, the convergence of Shannon sampling series may even break down completely. To overcome these drawbacks, one can use oversampling and regularization with a convenient window function. Such a window function can be chosen either in frequency domain or in time domain. We especially put emphasis on the comparison of these two approaches in terms of error decay rates. It turns out that the best numerical results are obtained by oversampling and regularization in time domain using a $$\sinh $$ sinh -type window function or a continuous Kaiser–Bessel window function, which results in an interpolating approximation with localized sampling. Several numerical experiments illustrate the theoretical results.

Funder

Bundesministerium für Bildung und Forschung

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)

2. Baricz, Á.: Bounds for modified Bessel functions of the first and second kinds. Proc. Edinb. Math. Soc. 2(53), 575–599 (2010)

3. Baricz, Á., Pogány, T.K.: Functional inequalities for modified Struve functions II. Math. Inequal. Appl. 17, 1387–1398 (2014)

4. Christensen, O.: An Introduction to Frames and Riesz Bases, 2nd edn. Birkhäuser/Springer, Basel (2016)

5. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ontological Approach to the Analysis of Signal Sampling Theorems;2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO);2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3