Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Aggarwal, C. C., Hinneburg, A., & Keim, D. A. (2001). On the surprising behavior of distance metrics in high dimensional space. In J. Van den Bussche & V. Vianu (Eds.), Database Theory – ICDT 2001, Berlin, Heidelberg (pp. 420–434). Berlin Heidelberg: Springer.
2. Ahn, J., Lee, M. H., & Lee, J. A. (2019). Distance-based outlier detection for high dimension, low sample size data. Journal of Applied Statistics, 46(1), 13–29.
3. Alrawashdeh, M. J. (2021). An adjusted grubbs’ and generalized extreme studentized deviation. Demonstratio Mathematica, 54(1), 548–557.
4. Aoshima, M., & Yata, K. (2018). Two-sample tests for high-dimension, strongly spiked eigenvalue models. Statistica Sinica, 28, 43–62.
5. Aoshima, M., & Yata, K. (2019). Distance-based classifier by data transformation for high-dimension, strongly spiked eigenvalue models. Annals of the Institute of Statistical Mathematics, 71, 473–503.