1. Abowd, J. M., & Vilhuber, L. (2008). How protective are synthetic data? In Domingo-Ferrer & Saygun (Eds.), Privacy in statistical databases. Lecture notes in computer science (Vol. 5262 pp. 239–246). New Yor: Springer.
2. Aggarwal, C. C., Yu, P. S., et al. (2004). A condensation approach to privacy preserving data mining. In E. Bertino, et al. (Eds.), Advances in database technology—EDBT, lecture notes in computer science (Vol. 2992, pp. 183–199). Berlin: Springer.
3. Aggarwal, C. C., & Yu, P. S. (2008). Privacy-preserving data mining: models and algorithms. New York: Springer.
4. Agrawal, R., & Srikant, R. (2000). Privacy preserving data mining. In Proceedings of ACM International Conference on Management of Data (SIGMOD) (pp. 439–450).
5. Anderson, M. J., & Seltzer, W. (2009). Federal statistical confidentiality and business data: Twentieth century challenges and continuing issues. Journal of Privacy and Confidentiality, 1, 7–52.