A user guide of CART and random forests with applications in FinTech and InsurTech

Author:

Chen Yongzhao,Cheung Ka Chun,Sun Ross Zhengyao,Yam Sheung Chi Phillip

Abstract

AbstractIn the realm of financial data analytics, machine learning techniques, particularly classification and regression trees (CARTs) and random forests, have shown remarkable efficiency. This article serves as a user guide for these methods, with an emphasis on their applicability and effectiveness in analyzing datasets in FinTech and InsurTech. In particular, we present several numerical examples and empirical studies, and demonstrate their superiority in handling data with a variety of input features, offering insights into their potential applications in the industries.

Funder

Hang Seng University of Hong Kong

University Grants Committee

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. Agrawal, R., Mehta, M., Shafer, J. C., Srikant, R., Arning, A., & Bollinger, T. (1996). The Quest Data Mining System. KDD, 96, 244–249.

2. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

3. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees. Florida, United States: CRC Press.

4. Chakraborty, A., & Kar, A. K. (2017). Swarm intelligence: A review of algorithms (pp. 475–494). Nature-inspired computing and optimization: Theory and applications.

5. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.). New York: John Wiley & Sons.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3