Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Adachi, K. (2013). Factor analysis with EM algorithm never gives improper solutions when sample covariance and initial parameter matrices are proper. Psychometrika, 78, 380–394.
2. Adachi, K. (2016). Three-way principal component analysis with its applications to psychology. In T. Sakata (Ed.), Applied matrix and tensor variate data analysis. (pp. 1–21). Springer.
3. Adachi, K. (2019). Factor analysis: Latent variable, matrix decomposition, and constrained uniqueness formulations. WIREs Computational Statistics, https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1458. Accessed 19 Mar 2019
4. Adachi, K., & Trendafilov, N. T. (2016). Sparse principal component analysis subject to prespecified cardinality of loadings. Computational Statistics, 31, 1403–1427.
5. Adachi, K., & Trendafilov, N. T. (2018a). Sparsest factor analysis for clustering variables: A matrix decomposition approach. Advances in Data Analysis and Classification, 12, 559–585.